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The Suzuki–Miyaura reaction of 1,4-dibromo-2-fluorobenzene with two equivalents of arylboronic acids
gave fluorinated para-terphenyls. The reaction with 1 equiv of arylboronic acid resulted in site-selective
formation of biphenyls. The one-pot reaction of 1,4-dibromo-2-fluorobenzene with two different arylbo-
ronic acids afforded fluorinated para-terphenyls containing two different terminal aryl groups.

� 2010 Elsevier Ltd. All rights reserved.
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Scheme 1. Synthesis of 3a–f. Conditions: (i) 1 (1.0 equiv), 2a–f (2.2 equiv), Cs2CO3

(2.2 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 90 �C, 6–8 h.

Table 1
Synthesis of 3a–f

2,3 Ar 3a (%)

a 4-(MeO)C6H4 52
b 4-tBuC6H4 63
c 4-(Vinyl)C H 45
Fluorinated arenes and hetarenes have a remarkable record in
medicinal and agricultural chemistry and play an important role
as lead compounds.1 The solubility, bioavailability and metabolic
stability of fluorinated compounds is often enhanced compared
to those of non-fluorinated analogues.2–4 Fluorinated arenes and
heteroarenes are useful substrates in transition metal-catalyzed
cross-coupling reactions.5 Aryl fluorides are used as ligands6 in cat-
alytic reactions and as organocatalysts.7

In recent years, a number of site-selective palladium(0)-cata-
lyzed cross-coupling reactions of polyhalogenated heterocycles
have been developed. The site-selectivity of these reactions is gen-
erally influenced by electronic and steric parameters.8 For exam-
ple, we have reported site-selective Suzuki–Miyaura (S–M)
reactions of tetrabrominated N-methylpyrrole, thiophene, selen-
ophene and of several other polyhalogenated arenes and hetarenes
such as 2,3,5-tribromothiophene and 2,3-dibromoindole.9 We have
also developed site-selective S–M reactions of the bis(triflate) of
methyl 2,5-dihydroxybenzoate and of related substrates.10 Herein,
we report the first results of our study related to S–M reactions of
1,4-dibromo-2-fluorobenzene.

The S–M reaction of commercially available 1,4-dibromo-2-
fluorobenzene (1) with 2 equiv of arylboronic acids 2a–f afforded
the fluorinated para-terphenyls 3a–f in moderate to good yields
(Scheme 1, Table 1). The best yields were obtained using 2.2 equiv
ll rights reserved.

nger).
of the arylboronic acid, Pd(PPh3)4 (0.03 equiv) as the catalyst and
Cs2CO3 (2.2 equiv) as the base (1,4-dioxane, 90 �C, 8 h).11,12

The S–M reaction of 1 with arylboronic acids 2a–g (1.0 equiv)
afforded the biaryls 4a–g in good yields and with very good site-
selectivity (Scheme 2, Table 2).11,13 The formation of the opposite
regioisomers was not observed.
6 4

d 3,4-(MeO)2C6H3 58
e 4-(EtO)C6H4 65
f 4-MeC6H4 60

a Yields of isolated products.
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Table 2
Synthesis of 4a–g

2,4 Ar 4a (%)

a 4-(MeO)C6H4 60
b 4-(tBu)C6H4 58
c 4-(Vinyl)C6H4 45
d 3,4-(MeO)2C6H3 67
e 4-(EtO)C6H4 68
f 4-MeC6H4 60
g 4-ClC6H4 60

a Yields of isolated products.
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Scheme 3. One-pot synthesis of 5a–e. Conditions:(1) 1 (1.0 equiv), 2a,d,f,h
(1.0 equiv), Cs2CO3 (1.5 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 90 �C, 8 h, 2)
2a,h–j (1.2 equiv), Cs2CO3 (1.5 equiv), 100 �C, 6 h.

Table 3
Synthesis of 5a–e

2 5 Ar1 Ar2 5a (%)

h,a a 4-(Acetyl)C6H5 4-(MeO)C6H4 60
a,i b 4-(MeO)C6H4 2-(MeO)C6H4 67
f,a c 4-MeC6H4 4-(MeO)C6H4 48
f,h d 4-MeC6H4 4-(Acetyl)C6H5 42
d,j e 3,4-(MeO)2C6H3 2-Thienyl 53

a Yields of isolated products.

Figure 1. Crystal structure of 4b.

F
Br

Br

F

Ar
1

ArB(OH)2

2a-g

i

Br

4a-g

Scheme 2. Synthesis of 4a–g. Conditions: (i) 1 (1.0 equiv), 2a–g (1.0 equiv), Cs2CO3

(1.5 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 90 �C, 6–8 h.
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Scheme 4. Possible explanation for the site-selectivity of cross-coupling reactions
of 1.
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The one-pot reaction of 1,4-dibromo-2-fluorobenzene with two
different arylboronic acids afforded the unsymmetrical fluorinated
para-terphenyls 5a–e containing two different terminal aryl
groups (Scheme 3, Table 3).14,15

Interestingly, the yields of products 5a–e are in the same range
as the yields of 4a–g. This might be explained by the assumption
that the selectivity and the yield are mainly determined by the first
attack of the boronic acid to 1. The second attack during the syn-
thesis of 5a–e only has a small influence on the yield because no
problem of site-selectivity exists. On the other hand, the yield of
products 3a–f (where no problem of site-selectivity exists) is in a
similar range. Therefore, we believe that the chromatographic
purification also has a great influence on the yield, due to some loss
Figure 2. Crystal s
of material. For all reactions, only one chromatographic purifica-
tion has to be carried out. Inspection of the NMR of the crude prod-
ucts 5a–e (before purification) shows that a small amount of
mono-coupling and double-coupling product (containing two Ar1

groups) is present in most cases. In case of the synthesis of 4a–g,
a small amount of double-coupling product is present in the crude
product mixture.

The structures of all products were established by 2D NMR
experiments (NOESY, HMBC). The structures of 4b and 3e were
independently confirmed by X-ray crystal structure analyses (Figs.
1 and 2).16

The site-selective formation of 4a–g and 5a–e can be explained
by steric and electronic reasons. The first attack of palladium(0)-
catalyzed cross-coupling reactions generally occurs at the more
tructure of 3e.



2812 M. Sharif et al. / Tetrahedron Letters 51 (2010) 2810–2812
electronic deficient and sterically less hindered position.8,17 Posi-
tion 4 of 1,4-dibromo-2-fluorobenzene (1) is sterically less hin-
dered because it is located next to two hydrogen atoms while
position 1 is located next to a fluorine atom (Scheme 4). In addi-
tion, position 4 (located meta to the fluorine atom) is more electron
deficient than position 1 (located ortho to the fluorine atoms), due
to the p-donating effect of the fluorine atom. In fact, the 1H NMR
signals of aromatic protons located ortho to a fluorine atom are
generally shifted to higher field compared to the proton located
in meta position.

In conclusion, we have reported site-selective Suzuki–Miyaura
reactions of 1,4-dibromo-2-fluorobenzene which provide a conve-
nient approach to fluorinated terphenyls and biaryls.
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